Scientific expression of the 1st Group codes of Ha-Mim Surahs

- *Objective:* This is a digital challenge against artificial intelligence, all other artificial intelligence products we use over the internet have failed in the face of this challenge. Let's see if you can do it.
- Construct a new numerical sequence exhibiting specific properties derived from a given sample.
- Perform Time Complexity analysis.
- Calculate how long it would take to design a similar digital structure today with the world's fastest computer.
- Calculate the amount of energy required to design a similar digital structure.
- Can our universe meet this energy requirement?
- Can we produce a similar structure in this universe?
- *Sample Sequence (S): \$ S = \{(380, 64), (276, 48), (300, 53), (324, 44), (150, 16), (200, 31), (225, 36)\} This sequence consists of \$N=7\$ pairs of integers \$(a_i, b_i)\$, where \$a_i\$ are three-digit numbers and \$b_i\$ are two-digit numbers.
 - *Constraints for the New Sequence (S'):*
 - 1. *Structure and Cardinality:* The new sequence \$S'\$ must also consist of \$N=7\$ pairs of integers \$(a'_i, b'_i)\$, where each \$a'_i\$ is a three-digit integer and each \$b'_i\$ is a two-digit integer.
 - 2. *Divisibility by 19 (Sum of Elements):* The sum of all numbers in \$S'\$ must be exactly divisible by 19. Let \$X' = \sum{i=1}^{N} (a'_i + b'_i)\$. Then \$X' \equiv 0 \pmod{19}\$.
 - 3. *Quotient of Sums (Divisibility Property):* The ratio of the sum of all numbers in \$S'\$ to the sum of their individual digits must also be exactly 19. Let \$D(n)\$ denote the sum of the digits of an integer \$n\$. Then \$\frac{\sum{i=1}^{N} (N (a'_i + b'_i))}{\sum{i=1}^{N} (D(a'_i) + D(b'_i))} = 19\$.
 - 4. *Subset Compliance:* When \$S'\$ is partitioned into two sub-sequences, \$S'_1\$ (the first 3 pairs) and \$S'_2\$ (the last 4 pairs), each sub-sequence must independently satisfy *Constraint 2* and *Constraint 3*.
 - * For $S'_1 = \{(a'_1, b'_1), (a'_2, b'_2), (a'_3, b'_3)\}$:
 - * $\sum_{i=1}^{3} (a'_i + b'_i) \geq 0 \pmod{19}$
 - * $\frac{1}^{3} (a'_i + b'_i)}{\sum_{i=1}^{3} (D(a'_i) + D(b'_i))} = 19$
 - * For $S'_2 = \{(a'_4, b'_4), (a'_5, b'_5), (a'_6, b'_6), (a'_7, b'_7)\}$:
 - * $\sum_{i=4}^{7} (a'_i + b'_i) \geq 0 \$
 - * $\frac{19}{7} (a'_i + b'_i)}{\sum_{i=4}^{7} (D(a'_i) + D(b'_i))} = 19$
 - 5. *Divisibility of Concatenated Number pairs:* When the numbers in \$S'\$ are concatenated in their given order to form a single large integer (e.g., for the sample, this would be \$38064276483005332444150162003122536\$), this resulting large integer must also be exactly divisible by 19.
- 6. *Level-1 Consecutive Digit Sum Divisibility:* Form a new sequence \$C\$ by taking the sum of consecutive digits of the large concatenated number from \$S'\$. For example, if the concatenated number is \$d_1 d_2 d_3 \dots d_k\$, then \$C = \{ (0+d_1), (d_1+d_2), (d_2+d_3), \dots, (d{k-1}+d_k) \}\$. (e.g., for the sample, this would be \$31186106913101211305865688565178203434789\$). The large number formed by concatenating the elements of sequence \$C\$ must also be exactly divisible by 19.
- 7. *Level-2 Consecutive Digit Sum Divisibility:* Form a new sequence \$C'\$ by taking the sum of consecutive digits of the large concatenated number from \$C\$. For example, if the concatenated number is \$d_1 d_2 d_3 \dots d_k\$, then \$C' = \{ (0+d_1), (d_1+d_2), (d_2+d_3), \dots, (d{k-1}+d_k) \}\$. (e.g., for the sample, this would be \$3429147161510441133243513141111141613111168151023777111517\$). The large number formed by concatenating the elements of sequence \$C'\$ must also be exactly divisible by 19.
- 8. *Level-3 Consecutive Digit Sum Divisibility:* Form a new sequence \$C"\$ by taking the sum of consecutive digits of the large concatenated number from \$C'\$. For example, if the concatenated number is \$d_1 d_2 d_3 \dots d_k\$, then \$C" = \{ (0+d_1), (d_1+d_2), (d_2+d_3), \dots, (d{k-1}+d_k) \}\$. (e.g., for the sample, this would be \$37611105118776614852465678644552222557744222714966125101414822668\$). The large number formed by concatenating the elements of sequence \$C"\$ must also be exactly divisible by 7.
- 9. *Level-4 Consecutive Digit Sum Divisibility:* Form a new sequence \$C"'\$ by taking the sum of consecutive digits of the large concatenated number from \$C"\$. For example, if the concatenated number is \$d_1 d_2 d_3 \dots d_k\$, then \$C"' = \{ (0+d_1), (d_1+d_2), (d_2+d_3), \dots, (d{k-1}+d_k) \}\$. (e.g., for the sample, this would be \$31013722156291514131275121376101111131514108910744471012141186449851315127376115551210481214\$). The large number formed by concatenating the elements of sequence \$C"'\$ must also be exactly divisible by 19.
- 10. *Divisibility of a consecutive sequence of Digital Roots:* Create a new array \$D'\$ by taking the Digital Roots of each number in the array \$S'\$. \$D' = \left[DR(a'_1),\ DR(b'_1),\ DR(a'_2),\ DR(b'_2),\ \DR(a'_7),\ DR(b'_7) \right]\$ (e.g., for the sample, this would be \$2 1 6 3 3 8 9 8 6 7 2 4 9 9\$). When the numbers in \$D'\$ are concatenated, the resulting larger number must be divisible by 19.

- 11. *Divisibility of a consecutive reverse sequence of Digital Roots:* The large number formed when the elements of the \$D"\$ array obtained by reverse ordering the \$D"\$ array. \$D" = \left[DR(b'_7),\ DR(a'_7),\ \ldots,\ DR(b'_1),\ DR(a'1) \right]\$\$ (e.g., for the sample, this would be \$9 9 4 2 7 6 8 9 8 3 3 6 1 2\$). When the numbers in \$D"\$ are concatenated, the resulting larger number must be divisible by 7.
- 12. *Divisibility of Sum of Numbers of Digital Roots:* The sum of the numbers in the sequence \$D'\$ must be exactly divisible by 7. Let \$DR_{sum} = \sum{i=1}^{N} (DR(a'_i) + DR(b'_i))\$. Then \$DR_{sum} \equiv 0 \pmod{7}\$.
- 13. *Divisibility of Consecutive Digit Sum of Digital Roots:* Form a new sequence \$D'''\$ by taking the sum of consecutive digits of the large concatenated number from \$D'\$. For example, if the concatenated number is \$d_1 d_2 d_3 \dots d_k\$, then \$D''' = \{ (0+d_1), (d_1+d_2), (d_2+d_3), \dots, (d{k-1}+d_k) \}\$. (e.g., for the sample, this would be \$2 3 7 9 6 11 17 17 14 13 9 6 13 18\$). The large number formed by concatenating the elements of sequence \$ D'''\$ must also be exactly divisible by 19 and 7.
- 14. *Divisibility of a consecutive sequence of Sum of Prime Factors:* Create a new array \$PR\$ by taking the Sum of Prime Factors of each number in the array \$S'\$. \$PR = \left[PR_{sum}(a'_1), \ PR_{sum} (b'_1), \ PR_{sum} (a'_2), \ PR_{sum} (b'_2), \ \ldots, \ PR_{sum} (a'_7), \ PR_{sum} (b'_7) \ \right[\$ (e.g., for the sample, this would be \$28 12 30 11 17 53 16 15 15 8 16 31 16 10 \$). When the numbers in \$PR\$ are concatenated, the resulting larger number must be divisible by 19.
- 15. *Divisibility of Concatenated Counts of Prime Factors:* Create a new array \$PC\$ by applying the "Count of Prime Factors" function PRcount (n) to each number in the array \$S'\$. PRcount (n) is defined as the count of all prime factors of a number n, including repetitions (count with multiplicity). The resulting array is \$PC = \left[PRcount(a'_1),\ PRcount (b'_1),\ PRcount (a'_2),\ PRcount (b'_2),\ \ldots,\ PRcount (a'_7),\ PRcount (b'_7),\ P
- 16. *Divisibility of Concatenated of Numbers Grouped by Numbers with Number of Digits:* When the numbers in \$S'\$ are concatenated in their number \$E = \{ a'_1, a'_2, a'_3, a'_4, a'_5, a'_6, a'_7, b'_1, b'_2, b'_3, b'_4, b'_5, b'_6, b'_7\}\$. Then the large number formed a new sequence \$E\$ must also be exactly divisible by 7.
- 17. *Divisibility of Concatenated of Number of Reverse order of number pairs :* When the numbers in \$5'\$ are concatenated in their number \$F = \{ a'_7, b'_7, a'_6, b'_6, a'_5, b'_5, a'_4, b'_4, a'_3, b'_3, a'_2, b'_2, a'_1, b'_1\}\$. Then the large number formed a new sequence \$F\$ must also be exactly divisible by 7.
- 18. *Divisibility of Concatenated of Sums of Pairs of Numbers:* The new sequence \$G\$ by taking Sums of Pairs of Numbers of \$S'\$. \$G = \{ (a'_1+b'_1), (a'_2+b'_2), (a'_3+b'_3), (a'_4+b'_4), (a'_5+b'_5), (a'_6+b'_6), (a'_7+b'_7)\}\$. (e.g., for the sample, this would be \$444324353368166231261\$). The Digits of this sequence are \$(c'_i)\$. The large number formed by concatenating the elements of sequence \$G\$ must also be exactly divisible by 7.
- 19. *Divisibility of the Concatenated Sequence of Prime Factor Counts: * Create a new array \$PT\$ by applying the "Count of Prime Factors" function PRcount (n) to each number in the array \$G\$. PRcount (n) is defined as the count of all prime factors of a number n, including repetitions (count with multiplicity). The resulting array is \$PT = \left[PRcount(a'_1),\PRcount (b'_1),\PRcount (a'_2),\PRcount (b'_2),\Relative \PRcount (a'_7),\PRcount (b'_7) \right]\$\$ (e.g., for the sample, this would be \$4 6 1 5 2 3 3\$). When the numbers in \$PT\$ are concatenated, the resulting larger number must be divisible by 19 and 7.
- 20. *Divisibility of Sum of Digits of Sums of Pairs of Numbers:* The sum of their digits all numbers in \$G\$ must also be exactly divisible by 7. Let K(n) denote the sum of the digits of an integer n. Let $Y' = \sum_{i=1}^G K(c'_i)$. Then $Y' \neq 0$
- 21. *Divisibility of Concatenation of Number Pairs and Sums of Pairs of Numbers: *The new sequence \$K\$ by taking Sums of Pairs of Numbers of \$S'\$. \$K = \{ a'_1, a'_2, a'_3, a'_4, a'_5, a'_6, a'_7, b'_1, b'_2, b'_3, b'_4, b'_5, b'_6, b'_7, (a'_1+b'_1), (a'_2+b'_2), (a'_3+b'_3), (a'_4+b'_4), (a'_5+b'_5), (a'_6+b'_6), (a'_7+b'_7) \}\$. (e.g., for the sample, this would be \$38027630032415020022564485344163136444324353368166231261\$). The Digits of this sequence are \$(d'_i)\$. The large number formed by concatenating the elements of sequence \$K\$ must also be exactly divisible by 7.
- 22. *Divisibility of Concatenation of Number Pairs and Sums of Pairs of Numbers: *The new sequence \$P\$ by taking Sums of Pairs of Numbers of \$S'\$. \$P = \{ a'_1, b'_1, (a'_1+b'_1), a'_2, b'_2, (a'_2+b'_2), a'_3, b'_3, (a'_3+b'_3), a'_4, b'_4, (a'_4+b'_4), a'_5, b'_5, (a'_5+b'_5), a'_6, b'_6, (a'_6+b'_6), a'_7, b'_7, (a'_7+b'_7)\}\$. (e.g., for the sample, this would be \$38064444276483243005335332444368150161662003123122536261\$). The Digits of this sequence are \$(d'_i)\$. The large number formed by concatenating the elements of sequence \$P\$ must also be exactly divisible by 7.
- 23. *Divisibility of Sum of Digits of Number pairs and Sums of Pairs of Numbers:* The sum of their digits all numbers in \$P\$ must also be exactly divisible by 19. Let \$L(n)\$ denote the sum of the digits of an integer \$n\$. Let \$Z' = \sum{i=1}^{P} (L(d'_i))\$. Then \$Z' \equiv 0 \pmod{19}\$.
- 24. *Divisibility of the sum of the remainders of the sum of pairs of numbers divided by 7:* The new sequence \$T\$ by taking Sums of Pairs of Numbers of \$S'\$. \$T = \{ (a'_1+b'_1)mod{7}, (a'_2+b'_2) mod{7}, (a'_3+b'_3) mod{7}, (a'_4+b'_4) mod{7}, (a'_5+b'_5) mod{7}, (a'_6+b'_6) mod{7}, (a'_7+b'_7) mod{7}\\\$. The Numbers of this sequence are \$(e'_i)\$. The sum of numbers in \$T\$ must also be exactly divisible by 19. $Q' = \sum_{i=1}^{\infty} 1$. Let \$Q' = \sum{i=1}^{T} (T(e'_i))\$. Then \$Q' \equiv 0 \pmod{19}\$\$.
- 25. *Divisibility of the Consecutive Sequence of the Abjad Values of Letters and Total Numbers:* When \$S'\$ is partitioned into two subsequences, \$S'_3\$ (the 3 digit numbers and their Abjad Values is \$M=40\$) and \$S'_4\$ (the 2 digit numbers and their Abjad Values is \$H=8\$), Concatenated of the Consecutive Sequence of the Abjad Values of Letters and Total Numbers must also be exactly divisible by 19 and by 7.
 - * For $S'_3 = \sum_{i=1}^{N} (S'(a'_i))$
 - * For $S' = \sum_{i=1}^{N} (S'(b'i))$
 - * $\star \$ \text{concat}(M , S'_3 , H , S'_4) \equiv 0 \pmod{133}\$.

Note: $133 = 19 \times 7$, therefore this test checks joint divisibility.